
 
 
 
 
 
 
 
 
 
 
 
 
Abstract- After recovery from acute myocardial infarction (MI), a 
significant number of patients remain at risk of sudden death, 
which is attributed to ventricular tachycardia (VT). Ventricular 
Late Potentials (VLPs) are associated with VT. VLPs are low 
amplitude high frequency signals that appear at the end of the QRS 
complex of an ECG recording.  In this work, discrete Wavelet 
Transform (DWT) and Artificial Neural Networks (ANN) are 
applied in the analysis of ECG signals in order to  identify VLPs.   
Results of this analysis are used to classify patients with and 
without VLPs in their ECGs.  DWT were computed for a total of 
(38) different ECG records that included control signals and signals 
for patients with VT.  A set of parameters were extracted from WT 
and used as inputs to neural networks for the classification.  
Multilayer feedforward ANNs employing the back-propagation 
(BP) learning algorithm were trained and tested using the WT 
extracted parameters. 
Keywords: Ventricular Late Potential (VLP); Discrete Wavelet 
Transform (DWT); Artificial Neural Networks (ANN); 
Electrocardiography (ECG). 

 
I. INTRODUCTION 

 
     Analyzing electrocardiographic (ECG) signals includes not 
only inspection of P, T and QRS waves, but also important 
hidden information such as Ventricular Late Potentials (VLP), 
that might be extracted from high-resolution recordings through 
advanced signal processing.  These VLPs are low-amplitude 
high-frequency potentials that have been observed in ECG 
signals of patients after myocardial infarction (MI) and 
considered as a noninvasive indicator of Ventricular Tachycardia 
(VT).  Previous studies have shown that patients without VLP in 
their ECGs have a greater chance of survival than those having 
VLP.  The task of identifying VLP is by no means an easy one to 
achieve due to the composite nature of ECG signals, (i.e. 
combination of signal and noise).  In addition, the low amplitude 
of the desired signal (VLP), which is in the order of 40 µv, 
embedded in high amplitude QRS complex in the order of one 
milli-volt and the nonstationarity of the ECG signals.  ANNs can 
be used to facilitate the automatic identification of MI patients 
with and without VLP. 
 

II.METHODOLOGY 
 

     The methodology employed in this work consists of the 
following stages, 1) taking the wavelet transform of the three 
X,Y and Z leads , 2) parameter extraction, 3) design, train and 
test neural networks.  In the WT transform stage of the process, 
the chosen levels of the WT of the three leads were combined to 
form the filtered QRS complex.  The area under this filtered 
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Fig. 1 Frequency distribution of different ECG components. 
 
QRS was calculated for each signal and used as one of the 
parameters.  The second parameter was the norm of level-6 
and level-7 combined together.  These parameters were used 
as an input set to the ANN for classification purposes. 
 
A. ECG signals and Ventricular Late Potentials 
 
     The frequency distributions of ECG signals are classified 
as lower frequency P and T waves, middle-to-high 
frequency QRS complex and high frequency late potentials 
when they exist [1].  The P and T waves are medium-
amplitude low-frequency signals (MALFS), the QRS 
complex is high-amplitude medium-frequency signal 
(HAMFS) and the VLP is a low-amplitude high-frequency 
signal (LAHFS).  Fig. 1 shows a diagram of the different 
frequency components presented against their respective 
strengths. 
    Characteristic changes in these waves are an indication of 
possible abnormalities.  Late in the ECG cycle, when high 
frequency events occur, these low-amplitude signals are 
identified as late potentials. Late potentials or VLP have 
been shown to be a predictive of arrhythmia of the heart. 
    When arrhythmias, such as tachycardia do occur, the 
QRS undergoes important morphological changes.  These 
changes may be in form of a widening of the QRS. As the 
QRS widens, its power spectra shows diminished 
contributions at higher frequencies and these are spread out 
over a wider body of signal. This empirical description of 
time-domain features of the ECG signal lends itself 
particularly well to analysis by time-frequency and time-
scale methods. 
     In previous studies a low-amplitude, high frequency 
signal in the last 40 ms of the filtered QRS and a prolonged 
QRS duration have been shown to identify patients with 
ventricular tachycardia     A late potential was defined as a 
low-amplitude signal 20 µv in the last 40 ms of the filtered 
QRS complex and a long filtered QRS complex was defined 
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Fig. 2  Forward and inverse WT 

 
as total filtered QRS duration greater than 120 ms where 
filtering in our case was carried out using the wavelet transform.  
The presence of late potential and/or long QRS is defined as a 
marker of abnormality such as ventricular tachycardia. 
[2][3][4][5]. 
 
B. Wavelet transform: a time-scale distribution 
 
     The wavelet transform is a special case of perfect 
reconstruction filter banks.  The main idea of the transform is to 
subdivide arbitrary signals into constant frequency bands using 
recursive filter banks generated from a small number of 
prototype filters. 
     The filtering process is equivalent to decomposing the signal 
using a set of basis functions that are localized in both space and 
frequency and which are scaled and shifted versions of a 
prototype mother wavelet. 
     In discrete time, scale changes are discrete. Scaling for this 
case involves sampling rate changes and resolution is directly 
related to scale.  The WT of a continuous signal is defined as: 
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     Analysis of x(t) is carried out by the use of a special function 
h(t), called mother wavelet.  This function is translated in time 
for selecting that part of the signal to be analyzed.  The selected 
portion of the signal is then expanded or contracted using a scale 
parameter a, which is analogous to frequency [5].  For small 
values of a, the wavelet is a narrow version of the original 
function, which corresponds roughly to high frequency. 
     For large values of a, the wavelet is expanded and 
corresponds to low frequencies.  WT can be realized using a pair 
of FIR filters H and G, which are low-pass and high-pass 
respectively, Together, these filters define analysis-synthesis 
scheme as shown in Fig (2).  Where F is the adjoint of H and K 
is the adjoint of G and are related according to (2).  
 
F(Z) =  G(-Z) 
K(Z) = -H(-Z)  
H(Z)G(-Z) – G(Z)H(-Z) = 2                                               (2) 
 

 
Fig. 3  Multilayer feedforward ANN 

 

     These relationships are chosen in order to eliminate 
aliasing, phase and amplitude distortion in the reconstructed 
signal.  This convolution-decimation process has several 
important properties, 1). In exact mathematical terms it 
allows for perfect reconstruction of the original signal. 2) It 
can be applied recursively. 3) The forward/inverse WT are 
elegant in their simplicity, requiring only convolution and 
up/down sampling, [12]. 
 
C. Neural Networks 
 
     A neural network has a parallel-distributed architecture 
that contains a large number of simple neuron like 
processing elements and a large number of weighted 
connections between the elements.  The weights on the 
connections encode the knowledge of a network.  The 
intelligence of a neural network emerges from the collective 
behavior of neurons, each of which performs only very 
limited operation. 
     The topology of a neural network refers to its framework 
as well as its interconnection scheme.  The number of input 
layers, hidden layers, output layers and the number of nodes 
per layer often specify the framework.  A multi-layer 
perceptron (MLP), which is, a feed-forward network is 
chosen as a neural network structure for this study. 
     Each artificial neuron receives a set of inputs, which are 
multiplied by a weight analogous to synaptic strength.  The 
sum of all weighted inputs determines the degree of firing 
called the activation level.  Each input X[n] is modulated by 
a weight W{n} and the total input is expressed as: 
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or in vector form X.W where: 
X = [ x1, x2, … ,xn] and W = [ w1, w2, …, wn ]. 
 
     The input signal is further processed by the activation 
function to produce the output signal, which if not zero, is 
transmitted along.  The ability of learning through training 
set is significant in the study to improve the classification 
performance of the network, [13][14][15]. 
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Fig. (4) A sample of the training performance. 
 
 

     Multi-layer perceptron (MLP), which is a feed-forward 
network, is chosen as a neural network structure for this work.  
A network containing two hidden layers with three neurons for 
each layer was designed and trained using the back-propagation 
learning algorithm as shown in Fig. 3.  The network was trained 
for a number of times and the best result for the data set was 
chosen.  The data set recorded and classified by experts at the 
Sussex University, England.  The set included a total of (38) 
with (17) normal ECG signals and (21) signals with VT.  Five 
signals from each category were used as training set for the 
network with the remaining signals used for testing.  The 
network was simulated with 50,100,150 and 200 epochs. .  A 
sample of the training performance for the network is shown in 
Fig. 4.  The first layer had its weights coming from the three 
inputs and the last layer consisted of a single neuron and 
represented the output.  The hyperbolic tangent function was 
used as the nonlinear activation function.  This commonly used 
form of sigmoid nonlinear function in its most general form is 
defined as: 
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where a and b are constants.  
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Fig. (5 ) Classification using only WT parameters. 

normal (o) and abnormal signals (*). 
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Fig. (5 ) Classification using only classical parameters. 

normal (o) and abnormal signals (*). 
 

III. RESULTS AND CONCLUSION 
 
     First the signals were visually compared using the two 
WT extracted parameters.  The two parameters were 
adequate to classify the signals completely with a set of 
threshold.  The first Parameter represents the power in 
vector magnitude and the second parameter represents the 
cross-term component resulting from the multiplication of 
level-6 with level-7.   With only the two WT extracted 
parameters used, as input to ANN did not produce the same 
classification results as the visual comparison in the 
previous step.  The result of this part is presented in Fig. (5).  
The next step was the application of the three classical 
parameters, i.e., QRS duration, voltage in the terminal of the 
QRS and the duration of the low amplitude terminal signal.  
The result of this part is presented in Fig. (6) and as can be 
seen did not give acceptable classification results.  The 
results of these two steps are close with a little advantage 
with the use of WT extracted parameters.  Finally all five 
parameters were applied as input to the neural network.  The 
results of this part gave a 100% classification of all signals 
in our data set without exception with dividing region from 
–0.2 to +0.2 level as indicated in Fig. (7).  The symbol (o) 
represents signals for normal subjects while; symbol (*) 
represents those with VLP in their ECG recordings. 
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Fig (7) Classification using both WT and classical parameters 

normal (o) and abnormal signals (*). 



 
 

Table 1 Classification results. 

 
WTP CP WTP + CP 

 
S F S F S F 

Normal 15 2 14 3 17 0 

VT 17 4 15 6 21 0 

Total 
 

32 
 

6 
 

29 
 

9 
 

38 
 

0 
 

% 84.21 15.79 76.32 23.68 100 0.0 

 
     In this work we attempted to improve the ability to classify 
signals originated from different categories of patients.  Table 1 
summarizes the result obtained and lists number of signals in 
each category.  The results are classified as Fail (F), Success (S) 
with all three procedures; the WT parameters (WTP), the 
classical parameters (CP) and using all parameters from both 
categories. The success percentage was 84.21% for WTP and 
was 76.32% for CP while it was 100% for the two groups of 
parameters together. The main distinction between the two 
categories presented is the absence or presence of what is known 
as VLP.  By introducing new parameters to be used in the 
classification we were able to get better results at the cost of 
increasing the calculation and analysis part.  The joint use of the 
WT with artificial neural networks gives an extended capability 
into the analysis and study of signals in general and in particular 
to signals of biological origin.  This approach will be 
investigated in our future work. 
     The result obtained in this study are encouraging and will be 
the basis for further investigation with future aim of acquiring 
more data for further validation.  Currently the authors are 
designing a high-resolution data acquisition system that will be 
used for this purpose. 
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